Меню сайту

Методи факторного аналізу для оцінки конкурентного середовища фірми

Безліч значень знаходять рішенням характеристичного рівняння - це характеристики варіації, точніше, показники дисперсії кожної головної компоненти. Сумарне значення дорівнює сумі дисперсій елементарних ознак Хj. За умови стандартизації початкових даних, коли рівно числу елементарних ознак m.

Рішення характеристичного рівняння відносно , коли число ознак m достатньо велике і матриця R великої розмірності, викликає труднощі при розрахунку визначника . Вони успішно долаються із застосуванням різноманітних математичних методів матричної алгебри. Найбільш ефективний і легко піддається алгоритмізації серед них метод, що базується на рекуррентных співвідношеннях Фадєєва. Якщо А - деяка симетрична матриця розмірністю m*m, то її визначник знаходиться по сліду матриць, похідних з А формула (2.11):

(2.11)

На заключному етапі розрахунків Pm і є визначник матриці А (Pm=|A|). Для перевірки обчислень може використовуватися умова: Bm=0.

Після обчислень рекурентних співвідношень записується характеристичний багаточлен:

(2.12)

Значення знаходять після того, як характеристичний багаточлен прирівнюють нулю, одержують характеристичне рівняння і вирішують його щодо характеристичних коренів .- матриця нормованих власних (характеристичних) векторів. Число векторів Vj спочатку рівне m, тобто . Одержують Vj перетворенням ненормованих власних векторів U:

(2.13)

де |Uj| - норма вектора U, тобто:

(2.14)

Необхідність повторного, після отримання матриці R, нормування простору тепер уже узагальнених ознак RF пояснюється механічною появою в ході попередніх розрахунків результатів, що спотворюють нормований простір.

У свою чергу власні вектори Uj знаходять з матричного рівняння:

(2.15)

Реально це означає рішення m систем лінійних рівнянь для кожного при .

В загальному вигляді система рівнянь має формула (2.16):

(2.16)

Приведена вище система об'єднує однорідні лінійні рівняння, і оскільки число її рівнянь дорівнює числу невідомих Umj, має нескінченну безліч рішень. Конкретні значення власних векторів при цьому можна знайти, задаючи довільно принаймні величину однієї компоненти кожного вектора і звичайно, щоб не ускладнювати розрахунків, її прирівнюють одиниці.

Перейти на страницу: 2 3 4 5 6 7 8

Подібні статті по економіці

Антимонопольне регулювання в корпоративному секторі
Темою, обраною для розгляду в даній роботі є антимонопольне регулювання в корпоративному секторі. На сьогодні для економіки України висвітлення даного аспекту являється надзвичайно ак ...

Земельні ресурси підприємства
Високоефективну і конкурентоздатну економіку можуть формувати і розвивати лише професійно компетентних і досвідчених управлінських кадрів всіх рівнів, перш за все господарських керівник ...

Витрати основної діяльності залізничного транспорту
Економічний аналіз є конкретною методологічною дисципліною. Ґрунтуючись на матеріалах інших економічних дисциплін і значною мірою узагальнюючи набуті студентами знання, він допоможе майб ...

Copyright © 2025. www.ekonomikam.com. Всі права захищені.